

Fermilab's Contributions to CDF Physics

R.J. Tesarek 9/26/07 D.O.E Program Review

CDF:

- International Collaboration
 - 635 authors, 62 institutions
 - N. America, Europe, Asia
- Fermilab is the largest single group
 - 73 members: 56 scientists, 12 postdocs, 5-10 visitors
 - All FNAL divisions represented
 - Responsibilities throughout the lab

Getting to Physics

- Detector Operations
 - 21 detector group leaders, 10 from Fermilab
- Data processing/handling
 - 5 offline leaders, 3 from Fermilab
- Analysis
 - 13 physics group leaders 4 from Fermilab
- Fermilab resources and leadership at all stages

Accel./ Detector Performance

- Challenge: maintain detector performance in high luminosity environment
- Opportunity: extract compelling physics from the rapidly increasing data samples
- >250 fb⁻¹ data in hand
 - 2 fb-1 analyses out this summer: lead by Fermilab physics coordinator

Physics Metrics

- Number of Publications
 - Last year: 93 analyses, 45 papers submitted,
 28 published
 - 24 (25%) analyses with FNAL contributions
- Conference Proceedings
 - Summer Conference Results:
 - 49 analyses, 267 primary authors, 31 FNAL
- Tenure Track/Permanent positions
 - Last year: 2 left (2 national lab)
 - Last 3 years: 12 left (9 faculty + national lab)

New Physics Results (2007)

- Broad physics program
- 18/51 (37%)
 analyses with
 contributions from
 FNAL group
- Many analyses use
 2 fb⁻¹ datasets

Ref: Fermilab Today 16 Aug, 2007

CDF Analyses

Lum. (fb-1)	Higgs Phyiscs	Lum(fb-1)
2.2	Search for H-> W+W- Events	1.9
1.9	Search for WH -> Iv bb Events	1.7
1.9	Search for ZH -> vv bb Events	1.7
1.9	Search for hbb in Events with at least 3 B-tags	1
1.7	Updated CDF SM Higgs Combination	1
1.2	Updated CDF+D0 SM Higgs Combination	1
1	QCD Physics	
	Inclusive Z+Jets Cross Section	1.7
1.9	Measurement of the Inclusive Z+bjet Cross Section	1.5
1.9	Inclusive Jet Cross Section using MidPoint Algorithm	1
1.5	Measurement of b-bbar Differential Cross Sections	0.26
1.1		
1		
1		
2		
1.4		
1.2		
1		
1		
1		
	2.2 1.9 1.9 1.9 1.7 1.2 1 1.9 1.5 1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.2 Search for H-> W+W- Events 1.9 Search for WH -> Iv bb Events 1.9 Search for ZH -> vv bb Events 1.9 Search for hbb in Events with at least 3 B-tags 1.7 Updated CDF SM Higgs Combination 1.2 Updated CDF+D0 SM Higgs Combination 1 QCD Physics Inclusive Z+Jets Cross Section 1.9 Measurement of the Inclusive Z+bjet Cross Section 1.9 Inclusive Jet Cross Section using MidPoint Algorithm 1.5 Measurement of b-bbar Differential Cross Sections 1.1 1 2 1.4 1.2 1

CDF Analyses

Top Physics	Lum (fb-1)	Top Physics	Lum (fb-1
Evidence for Single-Top Production using ME	1.5	ttbar Cross Section using lepton plus jets events with a Btag	1.
Discriminant		ttbar Cross Section using ee, μμ, eμ Dilepton events	1.3
Search for Single-Top Production using Likelihood Discriminant	1.5	ttbar Cross Section using e/μ plus track events	1.
Mt in Lepton plus Jets events using KDE	1.7	ttbar Cross Section using e/ μ plus track plus Btag events	1.:
Mt in Dilepton events using ME	1.9	Fraction of gg-> ttbar events using low pT tracks	
Mt in Dilepton events using KDE	1.9	Fraction of gg-> ttbar events using NN Discriminant	
Mt using lepton-pT	1.9	Search for the FCNC Decays t -> Zq	1.3
First Measurement of W+c Cross Section	1.8	Search for W' -> tb Events	;
W-Helicity Fractions in ttbar decays using an Unfolding Method	1.7		
W-Helicity Fractions in ttbar decays using a Template Method	1.7		
A _{FB} in ttbar events	1.7		
Top Quark Charge	1.5		
top-quark Width and Lifetime	1		
Mt in Dilepton events using Templates & ttbar Pz & X-Section Constraint	1.2		
Mt in Dilepton events using Templates and ttbar Pz	1.2		

CDF Analysis Selected Topics

Summary of recent analyses by FNAL personnel

Precise B_c⁺ Mass Measurement

- Last expected ground state meson to be observed
- Trigger improvements aided measurement

W. Wester, S. Tkaczyk, P.Lukens

$$B_c^+ o J/\psi \ \pi^+$$
 CDF2 Preliminary CDF2 Preliminary binned fit C.L.=83.4% 8 C.L.=83.4% 8 C.L.=83.4% 8 9 10

Technology Development

Tracking hyperons in the CDF silicon detector

Event Display of generated Hyperons Tracked in Silicon

Ξ_b Observation

Baryon containing3 quark generations

- P. Lukens, D. Litvintsev PRL 99 052002 (2007)
- D. Litvintsev, R.J. Tesarek (2006)

$B_{s,}B^0 \rightarrow \mu^+\mu^-$

- FCNC, enhanced by non- standard model physics
- S.M predicts:
 - BR(B_s→μμ) ~10⁻⁹
 - BR(B⁰→ $\mu\mu$) ~10⁻¹⁰

Worlds best limits

BR(
$$B_s \to \mu\mu$$
) < 5.8x10⁻⁸ @95% CL
BR($B^0 \to \mu\mu$) < 1.8x10⁻⁸ @95% CL

C-J Lin, D. Glenzinski, et al.

B_s→μμ Prospects

B_s Mixing

- 3s evidence to 5s observation with same data
 - Increase Bs signal yield
 - Neural net signal selection increases signal/background
 - Additional decay modes added
 - Improve flavor identification at production

$$\Delta m_s = 17.77 \pm 0.10(stat) \pm 0.07(sys)$$

$$\frac{|Vtd|}{|Vts|} = 0.2060 \pm 0.0007 (exp)_{-0.0060}^{+0.0081} (th)$$

Large Extra Dimensions (LED)

 Compactified LED produce gravitons

$$egin{aligned} q\overline{q} &
ightarrow gG \ qg &
ightarrow qG \ gg &
ightarrow gG \end{aligned}$$

- Graviton not detected
- Signature: jet+Missing E_T

Large Extra Dimensions Limit

Jet Cross Sections

- Large cross section process depends on parton density functions (PDF)
- Background to:
 - Top quark production
 - Higgs
 - Non Standard Model physics

C. Group, F. Chlebana, et al.,

Jet cross sections

Data used to improve Parton Density Functions (PDF)

Single Top Production

 Cross Section Measurement

CDF Run II Preliminary, L=1.51 fb⁻¹ Measurement of IV_{tb}I single top b-like F. Canelli, et al. 250 t-channelc-like Candidate Events q^I mistags q $\sigma_{single\ t} = 3.0^{+1.2}_{-1.1}\ \mathrm{pbarn}$ 200 150 V_{lb} Normalized to \bar{b} 100 50 -channelBest Fit Event Probability Discriminant W^{+} 0.2 0.4 0.6 8.0 V_{tb} **Event Probability Discriminant**

Single Top Cross Section

Direct IV_{tb}I measurement

W Polarization in t Decays

- Study t,b,W vertex
- f₊,f₀ measure components of W polarization

Top Quark Mass

- Top mass in t->W b decays
- Lepton+ jets: decay mode with highest mass precision (only 1 missing neutrino)

Mass, Jet energy scale templates

 $171.6 \pm 2.1(stat) \pm 1.1(syst) \text{ GeV/c}^2$

100

150

200

250

350 M_{top} (GeV/c²)

Top Quark Mass

- Advanced fitting techniques leads to worlds best measurement (lepton+jets)
- Constrained kinematics and ttbar cross section leads to worlds best M_t in dilepton channel
 - Improved techniques leading to more precise measurements
 - Contributions from FNAL personnel

A. Beretvas, et al., June 2007: 1.7 fb $^{ ext{-}1}$ $170.7^{4.2}_{3.9}(stat)\pm2.6(syst)\pm2.4(theory)$

March 2007

Top, W Mass Prospects

Toward Higgs:

- Precise electroweak measurements narrow search window for Higgs
- Current analysis
 efforts lead
 naturally to Higgs
 search

Summary

- Recording large data sets with improved detector and high luminosity
- Fermilab group very productive
 - New particle observations
 - Limits on new physics
 - Top quark properties
 - Narrowing search window for Higgs
- Exciting time for physics